MathDB
1+2+... +a_1\le 1/3(1+2+... +n) and 1+2+...+(a_1+a_2) \le 2/3(1+2+... +n)

Source: Rioplatense Olympiad 2014 level 3 P6

September 6, 2018
Setspartitionnumber theoryinequalities

Problem Statement

Let nNn \in N such that 1+2+...+n1 + 2 + ... + n is divisible by 33. Integers a1a2a32a_1\ge a_2\ge a_3\ge 2 have sum nn and they satisfy 1+2+...+a113(1+2+...+n)1 + 2 + ... + a_1\le \frac{1}{3}( 1 + 2 + ... + n ) and 1+2+...+(a1+a2)23(1+2+...+n)1 + 2 + ... + (a_1+ a_2) \le \frac{2}{3}( 1 + 2 + ... + n ). Prove that there is a partition of {1,2,...,n}\{ 1 , 2 , ... , n\} in three subsets A1,A2,A3A_1, A_2, A_3 with cardinals Ai=ai,i=1,2,3| A_i| = a_i, i = 1 , 2 , 3, and with equal sums of their elements .