MathDB
Find the greatest value

Source: Moldova TST 2020

March 8, 2020
maximum valuealgebrainequalitiesMoldova

Problem Statement

Let nn be a positive integer. Positive numbers aa, bb, cc satisfy 1a+1b+1c=1\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1. Find the greatest possible value of E(a,b,c)=ana2n+1+b2nc+bc2n+bnb2n+1+c2na+ca2n+cnc2n+1+a2nb+ab2nE(a,b,c)=\frac{a^{n}}{a^{2n+1}+b^{2n} \cdot c + b \cdot c^{2n}}+\frac{b^{n}}{b^{2n+1}+c^{2n} \cdot a + c \cdot a^{2n}}+\frac{c^{n}}{c^{2n+1}+a^{2n} \cdot b + a \cdot b^{2n}}