MathDB
Prove these two inequalities on heights, inradius and exradius of a tetrahedon

Source: 2019 Jozsef Wildt International Math Competition

May 20, 2020
tetrahedroninequalitiesinradiusexradius3D geometry

Problem Statement

In all tetrahedron ABCDABCD holds
[*] (n(n+2))1ncyc((har)2(hanrn)(han+2rn+2))1n1r2(n(n+2))^{\frac{1}{n}} \sum \limits_{cyc} \left(\frac{(h_a-r)^2}{(h_a^n-r^n)(h_a^{n+2}-r^{n+2})}\right)^{\frac{1}{n}}\leq \frac{1}{r^2} [*] (n(n+2))1ncyc((rar)2(ranrn)(ran+2rn+2))1n1r2(n(n+2))^{\frac{1}{n}} \sum \limits_{cyc} \left(\frac{(r_a-r)^2}{(r_a^n-r^n)(r_a^{n+2}-r^{n+2})}\right)^{\frac{1}{n}}\leq \frac{1}{r^2}
for all nNn\in \mathbb{N}^*