MathDB
IMC 2002 Problem 6

Source: IMC 2002

March 7, 2021
linear algebramatrix

Problem Statement

For an n×nn\times n matrix with real entries let M=supxRn{0}Mx2x2||M||=\sup_{x\in \mathbb{R}^{n}\setminus\{0\}}\frac{||Mx||_{2}}{||x||_{2}}, where 2||\cdot||_{2} denotes the Euclidean norm on Rn\mathbb{R}^{n}. Assume that an n×nn\times n matrxi AA with real entries satisfies AkAk112002k||A^{k}-A^{k-1}||\leq\frac{1}{2002k} for all positive integers kk. Prove that Ak2002||A^{k}||\leq 2002 for all positive integers kk.