MathDB
11st ibmo - costa rica 1996/q6.

Source: Spanish Communities

April 23, 2006
geometrycircumcircletrigonometrygeometry unsolved

Problem Statement

There are nn different points A1,,AnA_1, \ldots , A_n in the plain and each point AiA_i it is assigned a real number λi\lambda_i distinct from zero in such way that (AiAj)2=λi+λj(\overline{A_i A_j})^2 = \lambda_i + \lambda_j for all the ii,jj with iji\neq{}j} Show that:
(1) n4n \leq 4 (2) If n=4n=4, then 1λ1+1λ2+1λ3+1λ4=0\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \frac{1}{\lambda_3}+ \frac{1}{\lambda_4} = 0