MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova National Olympiad
2006 Moldova National Olympiad
11.6
2 sequences
2 sequences
Source: Moldavian MO 2006
March 19, 2006
limit
linear algebra
matrix
vector
algebra proposed
algebra
Problem Statement
Sequences
(
x
n
)
n
≥
1
(x_n)_{n\ge1}
(
x
n
)
n
≥
1
,
(
y
n
)
n
≥
1
(y_n)_{n\ge1}
(
y
n
)
n
≥
1
satisfy the relations
x
n
=
4
x
n
−
1
+
3
y
n
−
1
x_n=4x_{n-1}+3y_{n-1}
x
n
=
4
x
n
−
1
+
3
y
n
−
1
and
y
n
=
2
x
n
−
1
+
3
y
n
−
1
y_n=2x_{n-1}+3y_{n-1}
y
n
=
2
x
n
−
1
+
3
y
n
−
1
for
n
≥
1
n\ge1
n
≥
1
. If
x
1
=
y
1
=
5
x_1=y_1=5
x
1
=
y
1
=
5
find
x
n
x_n
x
n
and
y
n
y_n
y
n
. Calculate
lim
n
→
∞
x
n
y
n
\lim_{n\rightarrow\infty}\frac{x_n}{y_n}
lim
n
→
∞
y
n
x
n
.
Back to Problems
View on AoPS