MathDB
Iterates of function give distinct residues

Source: Abelkonkurransen Finale 2024, Problem 1b

March 8, 2024
number theorynumber theory proposedfunctionresiduemodular arithmetic

Problem Statement

Find all functions f:ZZf:\mathbb{Z} \to \mathbb{Z} such that the numbers n,f(n),f(f(n)),,fm1(n)n, f(n),f(f(n)),\dots,f^{m-1}(n) are distinct modulo mm for all integers n,mn,m with m>1m>1. (Here fkf^k is defined by f0(n)=nf^0(n)=n and fk+1(n)=f(fk(n))f^{k+1}(n)=f(f^{k}(n)) for k0k \ge 0.)