For the equation \frac {1 \plus{} x}{1 \minus{} x} \equal{} \frac {N \plus{} 1}{N} to be true where N is positive, x can have:
<spanclass=′latex−bold′>(A)</span>any positive value less than 1<spanclass=′latex−bold′>(B)</span>any value less than 1(C)\ \text{the value zero only} \qquad(D)\ \text{any non \minus{} negative value} \qquad(E)\ \text{any value}