MathDB
Recycled from 2018 and even before

Source: Romanian National Olympiad 2024 - Grade 12 - Problem 1

April 3, 2024
real analysiscalculusintegrationfunction

Problem Statement

Let f:RRf: \mathbb{R} \to \mathbb{R} be a continuous function such that f(x)+sin(f(x))x,f(x)+\sin(f(x)) \ge x, for all xR.x \in \mathbb{R}. Prove that 0πf(x)dxπ222.\int\limits_0^{\pi} f(x) \mathrm{d}x \ge \frac{\pi^2}{2}-2.