Romanian National Olympiad 2018 - Grade 11 - problem 1
Source: Romania NMO - 2018
April 7, 2018
greatest common divisorvectorlinear algebramatrix
Problem Statement
Let n≥2 be a positive integer and, for all vectors with integer entries X=x1x2⋮xn
let δ(X)≥0 be the greatest common divisor of x1,x2,…,xn. Also, consider A∈Mn(Z).
Prove that the following statements are equivalent:
<spanclass=′latex−bold′>i)</span>∣detA∣=1<spanclass=′latex−bold′>ii)</span>δ(AX)=δ(X), for all vectors X∈Mn,1(Z).Romeo Raicu