MathDB
Romanian National Olympiad 2018 - Grade 11 - problem 1

Source: Romania NMO - 2018

April 7, 2018
greatest common divisorvectorlinear algebramatrix

Problem Statement

Let n2n \geq 2 be a positive integer and, for all vectors with integer entries X=(x1x2xn)X=\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} let δ(X)0\delta(X) \geq 0 be the greatest common divisor of x1,x2,,xn.x_1,x_2, \dots, x_n. Also, consider AMn(Z).A \in \mathcal{M}_n(\mathbb{Z}). Prove that the following statements are equivalent: <spanclass=latexbold>i)</span><span class='latex-bold'>i) </span> detA=1|\det A | = 1 <spanclass=latexbold>ii)</span><span class='latex-bold'>ii) </span> δ(AX)=δ(X),\delta(AX)=\delta(X), for all vectors XMn,1(Z).X \in \mathcal{M}_{n,1}(\mathbb{Z}).
Romeo Raicu