MathDB
Prove this expression

Source: 2019 Jozsef Wildt International Math Competition-W. 29

May 18, 2020
integrationSummation

Problem Statement

Prove that 0e3t4e4t(3t1)+2e2t(15t17)+18(1t)(1+e4te2t)2=12k=0(1)k(2k+1)210\int \limits_0^{\infty} e^{3t}\frac{4e^{4t}(3t - 1) + 2e^{2t}(15t - 17) + 18(1 - t)}{\left(1 + e^{4t} - e^{2t}\right)^2}=12\sum \limits_{k=0}^{\infty}\frac{(-1)^k}{(2k + 1)^2}-10