MathDB
Pyramid and Trig

Source:

April 4, 2006
geometry3D geometrypyramidtrigonometryPythagorean Theorem

Problem Statement

Consider a pyramid PABCDP-ABCD whose base ABCDABCD is a square and whose vertex PP is equidistant from AA, BB, CC, and DD. If AB=1AB=1 and APD=2θ\angle APD=2\theta then the volume of the pyramid is (A) sinθ6(B) cotθ6(C) 16sinθ(D) 1sin2θ6(E) cos2θ6sinθ\text{(A)} \ \frac{\sin \theta}{6} \qquad \text{(B)} \ \frac{\cot \theta}{6} \qquad \text{(C)} \ \frac1{6\sin \theta} \qquad \text{(D)} \ \frac{1-\sin 2\theta}{6} \qquad \text{(E)} \ \frac{\sqrt{\cos 2\theta}}{6\sin \theta}