MathDB
Today's calculation of Integral 228

Source: Tokyo Medical and Dental University entrance exam 1972

October 4, 2007
calculusintegrationtrigonometrylimitcalculus computations

Problem Statement

Let x_n \equal{} \int_0^{\frac {\pi}{2}} \sin ^ n \theta \ d\theta \ (n \equal{} 0,\ 1,\ 2,\ \cdots). (1) Show that x_n \equal{} \frac {n \minus{} 1}{n}x_{n \minus{} 2}. (2) Find the value of nx_nx_{n \minus{} 1}. (3) Show that a sequence {xn} \{x_n\} is monotone decreasing. (4) Find limnnxn2 \lim_{n\to\infty} nx_n^2.