MathDB
KMO second round #4

Source:

May 6, 2005
vectorlinear algebramatrixcombinatorics unsolvedcombinatorics

Problem Statement

Let kk and NN be positive real numbers which satisfy kNk\leq N. For 1ik1\leq i \leq k, there are subsets AiA_i of {1,2,3,,N}\{1,2,3,\ldots,N\} that satisfy the following property.
For arbitrary subset of {i1,i2,,is}{1,2,3,,k}\{ i_1, i_2, \ldots , i_s \} \subset \{ 1, 2, 3, \ldots, k \} , Ai1Ai2...AisA_{i_1} \triangle A_{i_2} \triangle ... \triangle A_{i_s} is not an empty set.
Show that a subset {j1,j2,..,jt}{1,2,...,k}\{ j_1, j_2, .. ,j_t \} \subset \{ 1, 2, ... ,k \} exist that satisfies n(Aj1Aj2Ajt)kn(A_{j_1} \triangle A_{j_2} \triangle \cdots \triangle A_{j_t}) \geq k. (AB=ABABA \triangle B=A \cup B-A \cap B)