MathDB
Today's calculation of Integral 765

Source: 1994 Yokohama City University entrance exam/Medicine

November 16, 2011
calculusintegrationfunctionlimitcalculus computations

Problem Statement

Define two functions g(x), f(x) (x0)g(x),\ f(x)\ (x\geq 0) by g(x)=0xet2dt, f(x)=01e(1+s2)x1+s2ds.g(x)=\int_0^x e^{-t^2}dt,\ f(x)=\int_0^1 \frac{e^{-(1+s^2)x}}{1+s^2}ds.
Now we know that f(x)=01e(1+s2)xds.f'(x)=-\int_0^1 e^{-(1+s^2)x}ds.
(1) Find f(0).f(0).
(2) Show that f(x)π4ex (x0).f(x)\leq \frac{\pi}{4}e^{-x}\ (x\geq 0).
(3) Let h(x)={g(x)}2h(x)=\{g(\sqrt{x})\}^2. Show that f(x)=h(x).f'(x)=-h'(x).
(4) Find limx+g(x)\lim_{x\rightarrow +\infty} g(x)
Please solve the problem without using Double Integral or Jacobian for those Japanese High School Students who don't study them.