MathDB
An inequality with n-variables

Source: Austrain Polish 1984

December 7, 2013
inequalitiesinequalities unsolved

Problem Statement

Show that for n>1n>1 and any positive real numbers k,x1,x2,...,xnk,x_{1},x_{2},...,x_{n} then f(x1x2)x1+x2+f(x2x3)x2+x3+...+f(xnx1)xn+x1n22(x1+x2+...+xn)\frac{f(x_{1}-x_{2})}{x_{1}+x_{2}}+\frac{f(x_{2}-x_{3})}{x_{2}+x_{3}}+...+\frac{f(x_{n}-x_{1})}{x_{n}+x_{1}}\geq \frac{n^2}{2(x_{1}+x_{2}+...+x_{n})} Where f(x)=kxf(x)=k^x. When does equality hold.