MathDB
Inequality on k variables

Source:

October 7, 2010
inequalitiesinequalities proposed

Problem Statement

Given positive integers k,m,nk,m, n with kmnkm \leq n and non-negative real numbers x1,,xkx_1, \ldots , x_k, prove that n(i=1kxim1)mi=1k(xin1).n \left( \prod_{i=1}^k x_i^m -1 \right) \leq m \sum_{i=1}^k (x_i^n-1).