MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Stanford Mathematics Tournament
2023 Stanford Mathematics Tournament
5
SMT 2023 Algebra #5
SMT 2023 Algebra #5
Source:
May 3, 2023
Problem Statement
Suppose
α
,
β
,
γ
∈
{
−
2
,
3
}
\alpha,\beta,\gamma\in\{-2,3\}
α
,
β
,
γ
∈
{
−
2
,
3
}
are chosen such that
M
=
max
x
∈
R
min
y
∈
R
≥
0
α
x
+
β
y
+
γ
x
y
M=\max_{x\in\mathbb{R}}\min_{y\in\mathbb{R}_{\ge0}}\alpha x+\beta y+\gamma xy
M
=
x
∈
R
max
y
∈
R
≥
0
min
αx
+
β
y
+
γ
x
y
is finite and positive (note:
R
≥
0
\mathbb{R}_{\ge0}
R
≥
0
is the set of nonnegative real numbers). What is the sum of the possible values of
M
M
M
?
Back to Problems
View on AoPS