MathDB
Today's calculation of Integral 280

Source: 1982 Kobe University entrance exam

January 23, 2008
calculusintegrationanalytic geometrytrigonometrygeometrylogarithmscalculus computations

Problem Statement

Let p, q (p<q) p,\ q\ (p < q) be the x x coordinates of curves x^2 \plus{} y^2 \equal{} 1,\ y\geq 0 and y \equal{} \frac {1}{4x}. (1) Find α, β \alpha ,\ \beta such that \cos \frac {\alpha}{2} \equal{} p,\ \cos \frac {\beta }{2} \equal{} q\ (0 < \alpha < \pi ,\ 0 < \beta < \pi). (2) Find the area bounded by the curves.