MathDB
China South East Mathematical Olympiad 2023 Grade10 Q6

Source: Wenzhou

July 31, 2023
inequalities proposedalgebrainequalities

Problem Statement

Let a1a2an>0.a_1\geq a_2\geq \cdots \geq a_n >0 . Prove that(1a1+1a2+...+1an)2k=1nk(2k1)a12+a22++ak2 \left( \frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)^2\geq \sum_{k=1}^{n} \frac{k(2k-1)}{a^2_1+a^2_2+\cdots+a^2_k}