MathDB
2018 PUMaC Algebra A1

Source:

November 25, 2018
algebra

Problem Statement

Let ak=0.00k10s100k10s1a_k = 0.\overbrace{0 \ldots 0}^{k - 1 \: 0's} 1 \overbrace{0 \ldots 0}^{k - 1 \: 0's} 1 The value of k=1ak\sum_{k = 1}^\infty a_k can be expressed as a rational number pq\frac{p}{q} in simplest form. Find p+qp + q.