MathDB
CIIM 2012 Problem 3

Source:

June 9, 2016
CIIMCIIM 2012undergraduate

Problem Statement

Let a,b,c,a,b,c, the lengths of the sides of a triangle. Prove that (3a+b)(3b+a)(2a+c)(2b+c)+(3b+c)(3c+b)(2b+a)(2c+a)+(3c+a)(3a+c)(2c+b)(2a+b)4.\sqrt{\frac{(3a+b)(3b+a)}{(2a+c)(2b+c)}} + \sqrt{\frac{(3b+c)(3c+b)}{(2b+a)(2c+a)}} + \sqrt{\frac{(3c+a)(3a+c)}{(2c+b)(2a+b)}} \geq 4.