MathDB
f(n+2)-2022 \cdot f(n+1)+2021 \cdot f(n)=0

Source: Moldova TST 2022

April 1, 2022
functionalgebrafunctional equation

Problem Statement

The function f:NNf:\mathbb{N} \rightarrow \mathbb{N} verifies: 1)f(n+2)2022f(n+1)+2021f(n)=0,nN;1) f(n+2)-2022 \cdot f(n+1)+2021 \cdot f(n)=0, \forall n \in \mathbb{N}; 2)f(2022)=f(2220);2) f(20^{22})=f(22^{20}); 3)f(2021)=20223) f(2021)=2022. Find all possible values of f(2022)f(2022).