MathDB
(\sum 1/sin(a_i))(\sum 1/cos(a_i)) <= 2*(\sum 1/sin(2a_i))².

Source: Tuymaada 2003, day 2, problem 1.

May 5, 2007
trigonometryinequalities proposedinequalities

Problem Statement

Prove that for every α1,α2,,αn\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} in the interval (0,π/2)(0,\pi/2) (1sinα1+1sinα2++1sinαn)(1cosα1+1cosα2++1cosαn)\left({1\over \sin \alpha_{1}}+{1\over \sin \alpha_{2}}+\ldots+{1\over \sin \alpha_{n}}\right) \left({1\over \cos \alpha_{1}}+{1\over \cos \alpha_{2}}+\ldots+{1\over \cos \alpha_{n}}\right) \leq 2(1sin2α1+1sin2α2++1sin2αn)2.\leq 2 \left({1\over \sin 2\alpha_{1}}+{1\over \sin 2\alpha_{2}}+\ldots+{1\over \sin 2\alpha_{n}}\right)^{2}.
Proposed by A. Khrabrov