MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AIME Problems
2006 AIME Problems
15
Sequence
Sequence
Source: 2006 AIME A Problem 15
March 9, 2006
function
inequalities
AMC
AIME
absolute value
Problem Statement
Given that a sequence satisfies
x
0
=
0
x_0=0
x
0
=
0
and
∣
x
k
∣
=
∣
x
k
−
1
+
3
∣
|x_k|=|x_{k-1}+3|
∣
x
k
∣
=
∣
x
k
−
1
+
3∣
for all integers
k
≥
1
,
k\ge 1,
k
≥
1
,
find the minimum possible value of
∣
x
1
+
x
2
+
⋯
+
x
2006
∣
|x_1+x_2+\cdots+x_{2006}|
∣
x
1
+
x
2
+
⋯
+
x
2006
∣
.
Back to Problems
View on AoPS