MathDB
1 -1/2^{2^{n-1}}<sum 1/x+i<1/2^{2^{n}} if x_{n+1} = x_n^2 - x_n + 1, x_1 = 2

Source: 2018 Saudi Arabia GMO TST I p1

July 31, 2020
Sequencealgebrainequalitiesrecurrence relationreciprocal

Problem Statement

Let {xn}\{x_n\} be a sequence defined by x1=2x_1 = 2 and xn+1=xn2xn+1x_{n+1} = x_n^2 - x_n + 1 for n1n \ge 1. Prove that 1122n1<1x1+1x2+...+1xn<1122n1 -\frac{1}{2^{2^{n-1}}} < \frac{1}{x_1}+\frac{1}{x_2}+ ... +\frac{1}{x_n}< 1 -\frac{1}{2^{2^n}} for all nn