MathDB
Problems
Contests
International Contests
IMO Longlists
1983 IMO Longlists
72
Cosines inequality on n variables - ILL 1983
Cosines inequality on n variables - ILL 1983
Source:
October 7, 2010
trigonometry
inequalities
inequalities unsolved
Problem Statement
Prove that for all
x
1
,
x
2
,
…
,
x
n
∈
R
x_1, x_2,\ldots , x_n \in \mathbb R
x
1
,
x
2
,
…
,
x
n
∈
R
the following inequality holds:
∑
n
≥
i
>
j
≥
1
cos
2
(
x
i
−
x
j
)
≥
n
(
n
−
2
)
4
\sum_{n \geq i >j \geq 1} \cos^2(x_i - x_j ) \geq \frac{n(n-2)}{4}
n
≥
i
>
j
≥
1
∑
cos
2
(
x
i
−
x
j
)
≥
4
n
(
n
−
2
)
Back to Problems
View on AoPS