MathDB
sqrt( x + 4sqrt(x-4)) - sqrt( x + 2sqrt(x-1)) = 1

Source: 0

April 23, 2009

Problem Statement

How many distinct real roots does the equation \sqrt{x\plus{}4\sqrt{x\minus{}4} } \minus{}\sqrt{x\plus{}2\sqrt{x\minus{}1} } \equal{}1 have?
<spanclass=latexbold>(A)</span> 0<spanclass=latexbold>(B)</span> 1<spanclass=latexbold>(C)</span> 2<spanclass=latexbold>(D)</span> 3<spanclass=latexbold>(E)</span> 4<span class='latex-bold'>(A)</span>\ 0 \qquad<span class='latex-bold'>(B)</span>\ 1 \qquad<span class='latex-bold'>(C)</span>\ 2 \qquad<span class='latex-bold'>(D)</span>\ 3 \qquad<span class='latex-bold'>(E)</span>\ 4