MathDB
4a_1-2b_1=7

Source: Moldova TST 2012

March 9, 2023
number theory

Problem Statement

Let f:RR,f(x,y)=x22y.f:\mathbb{R}\rightarrow\mathbb{R}, f(x,y)=x^2-2y. Define the sequences (an)n1(a_n)_{n\geq1} and (bn)n1(b_n)_{n\geq1} such that an+1=f(an,bn),bn+1=f(bn,an).a_{n+1}=f(a_n,b_n), b_{n+1}=f(b_n,a_n). If 4a12b1=7:4a_1-2b_1=7 : a) find the smallest kNk\in\mathbb{N} for which the number p=2k(2512a9b9)p=2^k\cdot(2^{512}a_9-b_9) is an integer. b) prove that 2210+229+12^{2^{10}}+2^{2^9}+1 divides p.p.