MathDB
Putnam A3 1984

Source:

February 7, 2011
Putnamlinear algebramatrixlimitalgebrapolynomialLaTeX

Problem Statement

Let nn be a positive integer. Let a,b,xa,b,x be real numbers, with aba \neq b and let MnM_n denote the 2nx2n2n x 2n matrix whose (i,j)(i,j) entry mijm_{ij} is given by mij=xm_{ij}=x if i=ji=j, mij=am_{ij}=a if iji \not= j and i+ji+j is even, mij=bm_{ij}=b if iji \not= j and i+ji+j is odd. For example M2=xbabbxbaabxbbabx M_2=\begin{vmatrix}x& b& a & b\\ b& x & b &a\\ a & b& x & b\\ b & a & b & x \end{vmatrix}. Express limx 0detMn(xa)(2n2)\lim_{x\to\ 0} \frac{ det M_n}{ (x-a)^{(2n-2)} } as a polynomial in a,ba,b and nn .
P.S. How write in latex mij=...m_{ij}=... with symbol for the system (because is multiform function?)