MathDB
Today's calculation of Integral 269

Source: 2001 Osaka Medical College entrance exam

January 18, 2008
calculusintegrationgeometrytrigonometrycalculus computations

Problem Statement

For the curve C:y=11+x2 C: y = \frac {1}{1 + x^2}, Let A(α, f(α)), B(1α, f(1α)) (α>0). A(\alpha ,\ f(\alpha)),\ B\left( - \frac {1}{\alpha},\ f\left( - \frac {1}{\alpha} \right)\right)\ (\alpha > 0). Find the minimum area bounded by the line segments OA, OB OA,\ OB and C, C, where O O is the origin.
Note that you are not allowed to use the integral formula of 11+x2 \frac {1}{1 + x^2} for the problem.