MathDB
Arithmetic progression

Source: RMO 2004, 10th grade, problem 1

March 6, 2005
functionarithmetic sequencealgebra unsolvedalgebra

Problem Statement

Let f:RRf : \mathbb{R} \to \mathbb{R} be a function such that f(x)f(y)xy|f(x)-f(y)| \leq |x-y|, for all x,yRx,y \in \mathbb{R}. Prove that if for any real xx, the sequence x,f(x),f(f(x)),x,f(x),f(f(x)),\ldots is an arithmetic progression, then there is aRa \in \mathbb{R} such that f(x)=x+af(x)=x+a, for all xRx \in \mathbb R.