MathDB
E (x, m) = \frac{sum [(2m -1)^ 4 + x + x]}{sum[(2m )^ 4 + x]}

Source: 2002 Moldova JBMO TST p5

February 25, 2021
algebra

Problem Statement

For any natural number m1m \ge 1 and any real number x0x \ge 0 we define expression E(x,m)=(14+x)(34+x)(54+x)...[(2m1)4+x](24+x)(44+x)(64+x)...[(2m)4+x].E (x, m) = \frac{(1^4 + x) (3^4 + x) (5^4 + x) ... [(2m -1)^ 4 + x]}{(2^4 + x) (4^4 + x) (6^4 + x) ... [(2m )^ 4 + x]}. It is known that E(14,m)=11013.E\left(\frac{1}{4},m\right)=\frac{1}{1013}. . Determine the value of mm