Let {x}=x−⌊x⌋ . Consider a function f from the set {1,2,...,2020} to the half-open interval [0,1). Suppose that for all x,y, there exists a z so that {f(x)+f(y)}=f(z). We say that a pair of integers m,n is valid if 1≤m,n≤2020 and there exists a function f satisfying the above so f(1)=nm. Determine the sum over all valid pairs m,n of mn.