MathDB
sum a^2/(b^3 + c^4 + 1) > 1/5

Source: Estonia IMO TST 2014 p2

April 5, 2020
inequalitiesalgebra

Problem Statement

Let a,ba, b and cc be positive real numbers for which a+b+c=1a + b + c = 1. Prove that a2b3+c4+1+b2c3+a4+1+c2a3+b4+1>15\frac{a^2}{b^3 + c^4 + 1}+\frac{b^2}{c^3 + a^4 + 1}+\frac{c^2}{a^3 + b^4 + 1} > \frac{1}{5}