MathDB
AM x AN / AB x AC + BM x BN/ BA x BC + CM x CN / CA x CB = 1

Source: 2010 Saudi Arabia IMO TST III p2

December 27, 2021
ratiogeometryequal angles

Problem Statement

Points MM and NN are considered in the interior of triangle ABCABC such that MAB=NAC\angle MAB = \angle NAC and MBA=NBC\angle MBA = \angle NBC. Prove that AMANABAC+BMBNBABC+CMCNCACB=1\frac{AM \cdot AN}{AB \cdot AC}+ \frac{BM\cdot BN}{BA \cdot BC}+ \frac{CM \cdot CN }{CA \cdot CB}=1