MathDB
$$f(x_1)+f(x_2)+\ldots+f(x_n)=nf(\sqrt[n]{x_1x_2\ldots x_n}),$$

Source: Moldova TST 1999

August 7, 2023
function

Problem Statement

The fuction f(0,)Rf(0,\infty)\rightarrow\mathbb{R} verifies f(x)+f(y)=2f(xy),x,y>0f(x)+f(y)=2f(\sqrt{xy}), \forall x,y>0. Show that for every positive integer n>2n>2 the following relation takes place f(x1)+f(x2)++f(xn)=nf(x1x2xnn),f(x_1)+f(x_2)+\ldots+f(x_n)=nf(\sqrt[n]{x_1x_2\ldots x_n}), for every positive integers x1,x2,,xnx_1,x_2,\ldots,x_n.