Let n(n>1) be an odd. We define xk=(x1(k),x2(k),⋯,xn(k)) as follow:
x0=(x1(0),x2(0),⋯,xn(0))=(1,0,⋯,0,1);
xi(k)={0,1,emsp;xi(k−1)=xi+1(k−1),emsp;xi(k−1)=xi+1(k−1),i=1,2,⋯,n, where xn+1(k−1)=x1(k−1).
Let m be a positive integer satisfying x0=xm. Prove that m is divisible by n.