MathDB
Right Circular Cone

Source:

February 7, 2009
geometry3D geometryratio

Problem Statement

A right circular cone has for its base a circle having the same radius as a given sphere. The volume of the cone is one-half that of the sphere. The ratio of the altitude of the cone to the radius of its base is: <spanclass=latexbold>(A)</span> 11<spanclass=latexbold>(B)</span> 12<spanclass=latexbold>(C)</span> 23<spanclass=latexbold>(D)</span> 21<spanclass=latexbold>(E)</span> 54 <span class='latex-bold'>(A)</span>\ \frac{1}{1} \qquad <span class='latex-bold'>(B)</span>\ \frac{1}{2} \qquad <span class='latex-bold'>(C)</span>\ \frac{2}{3} \qquad <span class='latex-bold'>(D)</span>\ \frac{2}{1} \qquad <span class='latex-bold'>(E)</span>\ \sqrt{\frac{5}{4}}