MathDB
Romanian National Olympiad 2024 - Grade 11 - Problem 1

Source: Romanian National Olympiad 2024 - Grade 11 - Problem 1

April 4, 2024
functionreal analysis

Problem Statement

Let IRI \subset \mathbb{R} be an open interval and f:IRf:I \to \mathbb{R} a twice differentiable function such that f(x)f(x)=0,f(x)f''(x)=0, for any xI.x \in I. Prove that f(x)=0,f''(x)=0, for any xI.x \in I.