(x - a_1)(x - a_2) ... (x - a_n) <= x^n - a^n_1
Source: IMO Shortlist 1996, A2
August 9, 2008
algebraSequenceInequalityIMO Shortlist
Problem Statement
Let be real numbers such that for all integers a^k_1 \plus{} a^k_2 \plus{} \ldots \plus{} a^k_n \geq 0.Let p \equal{}\max\{|a_1|, \ldots, |a_n|\}. Prove that p \equal{} a_1 and that (x \minus{} a_1) \cdot (x \minus{} a_2) \cdots (x \minus{} a_n) \leq x^n \minus{} a^n_1 for all