MathDB
Limit of recursive sequence of points - OIMU 2005 Problem 3

Source:

September 3, 2010
limitalgebra proposedalgebra

Problem Statement

Consider the sequence defined recursively by (x1,y1)=(0,0)(x_1,y_1)=(0,0),
(xn+1,yn+1)=((12n)xn1nyn+4n,(11n)yn1nxn+3n)(x_{n+1},y_{n+1})=\left(\left(1-\frac{2}{n}\right)x_n-\frac{1}{n}y_n+\frac{4}{n},\left(1-\frac{1}{n}\right)y_n-\frac{1}{n}x_n+\frac{3}{n}\right).
Find limn(xn,yn)\lim_{n\to \infty}(x_n,y_n).