MathDB
Easy inequality

Source: 2016 Korea Winter Camp 1st Test #6

January 25, 2016
inequalities

Problem Statement

Let ai,bia_i, b_i (1in1 \le i \le n, n2n \ge 2) be positive real numbers such that i=1nai=i=1nbi\sum_{i=1}^n a_i = \sum_{i=1}^n b_i.
Prove that i=1n(ai+1+bi+1)2n(aibi)2+4(n1)j=1najbj1n1\sum_{i=1}^n \frac{(a_{i+1}+b_{i+1})^2}{n(a_i-b_i)^2+4(n-1)\sum_{j=1}^n a_jb_j} \ge \frac{1}{n-1}