MathDB
Today's calculation of Integral 762

Source: 1993 Kogakuin Univesity entrance exam/Engineering

November 5, 2011
calculusintegrationfunctiontrigonometrycalculus computations

Problem Statement

Define a function fn(x) (n=0, 1, 2, )f_n(x)\ (n=0,\ 1,\ 2,\ \cdots) by
f0(x)=sinx, fn+1(x)=0π2fn(t)sin(x+t)dt.f_0(x)=\sin x,\ f_{n+1}(x)=\int_0^{\frac{\pi}{2}} f_n\prime (t)\sin (x+t)dt.
(1) Let fn(x)=ansinx+bncosx.f_n(x)=a_n\sin x+b_n\cos x. Express an+1, bn+1a_{n+1},\ b_{n+1} in terms of an, bn.a_n,\ b_n.
(2) Find n=0fn(π4).\sum_{n=0}^{\infty} f_n\left(\frac{\pi}{4}\right).