Let BC of right triangle ABC be the diameter of a circle intersecting hypotenuse AB in D. At D a tangent is drawn cutting leg CA in F. This information is not sufficient to prove that
<spanclass=′latex−bold′>(A)</span>DF bisects CA<spanclass=′latex−bold′>(B)</span>DF bisects ∠CDA(C)\ DF \equal{} FA \qquad (D)\ \angle A \equal{} \angle BCD \qquad (E)\ \angle CFD \equal{} 2\angle A