MathDB
Proving in Geometry

Source:

January 11, 2009
geometry

Problem Statement

Let BC BC of right triangle ABC ABC be the diameter of a circle intersecting hypotenuse AB AB in D D. At D D a tangent is drawn cutting leg CA CA in F F. This information is not sufficient to prove that <spanclass=latexbold>(A)</span> DF bisects CA<spanclass=latexbold>(B)</span> DF bisects CDA <span class='latex-bold'>(A)</span>\ DF \text{ bisects }CA \qquad <span class='latex-bold'>(B)</span>\ DF \text{ bisects }\angle CDA (C)\ DF \equal{} FA \qquad (D)\ \angle A \equal{} \angle BCD \qquad (E)\ \angle CFD \equal{} 2\angle A