MathDB
sequence and inequality

Source: Indonesia IMO 2010 TST, Stage 1, Test 3, Problem 3

November 12, 2009
inequalitiesinductionalgebra proposedalgebra

Problem Statement

Let a1,a2, a_1,a_2,\dots be sequence of real numbers such that a_1\equal{}1, a_2\equal{}\dfrac{4}{3}, and a_{n\plus{}1}\equal{}\sqrt{1\plus{}a_na_{n\minus{}1}},   \forall n \ge 2. Prove that for all n2 n \ge 2, a_n^2>a_{n\minus{}1}^2\plus{}\dfrac{1}{2} and 1\plus{}\dfrac{1}{a_1}\plus{}\dfrac{1}{a_2}\plus{}\dots\plus{}\dfrac{1}{a_n}>2a_n. Fajar Yuliawan, Bandung