MathDB
Minimum and Maximum Inequality

Source: 2013 CMO #4

March 31, 2013
inequalitiesceiling functionalgebra unsolvedalgebra

Problem Statement

Let nn be a positive integer. For any positive integer jj and positive real number rr, define fj(r)f_j(r) and gj(r)g_j(r) by fj(r)=min(jr,n)+min(jr,n), and gj(r)=min(jr,n)+min(jr,n),f_j(r) = \min (jr, n) + \min\left(\frac{j}{r}, n\right), \text{ and } g_j(r) = \min (\lceil jr\rceil, n) + \min \left(\left\lceil\frac{j}{r}\right\rceil, n\right), where x\lceil x\rceil denotes the smallest integer greater than or equal to xx. Prove that j=1nfj(r)n2+nj=1ngj(r)\sum_{j=1}^n f_j(r)\leq n^2+n\leq \sum_{j=1}^n g_j(r) for all positive real numbers rr.