Let n be a positive integer. For any positive integer j and positive real number r, define fj(r) and gj(r) by
fj(r)=min(jr,n)+min(rj,n), and gj(r)=min(⌈jr⌉,n)+min(⌈rj⌉,n),
where ⌈x⌉ denotes the smallest integer greater than or equal to x. Prove that
j=1∑nfj(r)≤n2+n≤j=1∑ngj(r)
for all positive real numbers r.