Consider all polynomials of a complex variable, P(z)=4z4+az3+bz2+cz+d, where a,b,c and d are integers, 0≤d≤c≤b≤a≤4, and the polynomial has a zero z0 with ∣z0∣=1. What is the sum of all values P(1) over all the polynomials with these properties? <spanclass=′latex−bold′>(A)</span>84<spanclass=′latex−bold′>(B)</span>92<spanclass=′latex−bold′>(C)</span>100<spanclass=′latex−bold′>(D)</span>108<spanclass=′latex−bold′>(E)</span>120