Define a sequence recursively by F0=0, F1=1, and Fn= the remainder when Fn−1+Fn−2 is divided by 3, for all n≥2. Thus the sequence starts 0,1,1,2,0,2…. What is F2017+F2018+F2019+F2020+F2021+F2022+F2023+F2024?<spanclass=′latex−bold′>(A)</span>6<spanclass=′latex−bold′>(B)</span>7<spanclass=′latex−bold′>(C)</span>8<spanclass=′latex−bold′>(D)</span>9<spanclass=′latex−bold′>(E)</span>10