MathDB
Distinct sums of permuted numbers !!!

Source: Romania TST 2015 Day 4 Problem 3

June 4, 2015
permutationsPartial sumsProbabilistic MethodcombinatoricsRomanian TST

Problem Statement

Let nn be a positive integer . If σ\sigma is a permutation of the first nn positive integers , let S(σ)S(\sigma) be the set of all distinct sums of the form i=klσ(i)\sum_{i=k}^{l} \sigma(i) where 1kln1 \leq k \leq l \leq n . (a) Exhibit a permutation σ\sigma of the first nn positive integers such that S(σ)(n+1)24|S(\sigma)|\geq \left \lfloor{\frac{(n+1)^2}{4}}\right \rfloor . (b) Show that S(σ)>nn42|S(\sigma)|>\frac{n\sqrt{n}}{4\sqrt{2}} for all permutations σ\sigma of the first nn positive integers .